Dominika Gajdosikova 
Barbora Gabrikova 


Researchers from all over the world have become more interested in bankruptcy prediction during the past 50 years. The prediction of corporate financial difficulties has been the subject of numerous studies ever since Altman revealed the breakthrough bankruptcy prediction model in 1968. The main aim of this research paper is to describe the fundamental concepts associated with the subject of corporate bankruptcy prediction. By identifying the most relevant research papers, nations, and authors in the Web of Science database, an in-depth review of the publications was performed before the analysis. The bibliometric map was created in the VOS Viewer program using the final search result with all available information. The results of the bibliometric analysis reveal that the keywords bankruptcy prediction and classification are the most closely related keywords using the analysis of citations that frequently occur, and that the USA and China developed the most significant international co-author relationships.

Keywords: corporate bankruptcy prediction; prediction model; literature review; bibliometric analysis

JEL Codes: G17, G32, G33

DOI: 10.37708/el.swu.v5i1.8

CITE AS: […]



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


  1. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589-609.

  2. Altman, E. I. (1984). The success of business failure prediction models: An international survey. Journal of Banking & Finance, 8(2), 171-198.

  3. Altman, E. I., Iwanicz‐Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z‐score model. Journal of International Financial Management & Accounting, 28(2), 131-171.

  4. Ansari, A., Ahmad, I. S., Bakar, A. A., & Yaakub, M. R. (2020). A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE Access, 8, 176640-176650.

  5. Ansoff, H. I. (1965). Corporate Strategy. NewYork: McGraw-Hill.

  6. Balina, R., Idasz-Balina, M., & Achsani, N. A. (2021). Predicting Insolvency of the Construction Companies in the Creditworthiness Assessment Process—Empirical Evidence from Poland. Journal of Risk and Financial Management, 14(10).

  7. Barboza, F., Kimura, H., & Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417.

  8. Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111.

  9. Ben Jabeur, S., & Serret, V. (2023). Bankruptcy prediction using fuzzy convolutional neural networks. Research in International Business and Finance, 64.

  10. Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International Journal of Production Research, 57(15-16), 4719-4742.

  11. Blazek, R., Durana, P., & Michulek, J. (2023). Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis. Stats, 6(1), 411-430.

  12. Brygala, M. (2022). Consumer bankruptcy prediction using balanced and imbalanced data. Risks, 10(2), 24.

  13. Campobasso, F., & Boscia, V. (2022). Sustainability frontiers of strategic risk management and firm survival: The Altman score effectiveness. A bibliometric analysis. Business Strategy and the Environment.

  14. Chabowski, B. R., Mena, J. A., & Gonzalez-Padron, T. L. (2011). The structure of sustainability research in marketing, 1958–2008: A basis for future research opportunities. Journal of the Academy of Marketing Science, 39(1), 55-70.

  15. Chou, C. H., Hsieh, S. C., & Qiu, C. J. (2017). Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction. Applied Soft Computing, 56, 298-316.

  16. Cindik, Z., & Armutlulu, I. H. (2021). A revision of Altman Z-Score model and a comparative analysis of Turkish companies’ financial distress prediction. National Accounting Review, 3(2), 237-255.

  17. Csikosova, A., Janoskova, M., & Culkova, K. (2019). Limitation of financial health prediction in companies from post-communist countries. Journal of Risk and Financial Management, 12(1), 15.

  18. Csikosova, A., Janoskova, M., & Culkova, K. (2020). Application of discriminant analysis for avoiding the risk of quarry operation failure. Journal of Risk and Financial Management, 13(10).

  19. Delina, R., & Packova, M. (2013). Prediction bankruptcy models validation in Slovak business environment. E & M Ekonomie a management, 16(3), 101-113.

  20. Dimitras, A. I., Slowinski, R., Susmaga, R., & Zopounidis, C. (1999). Business failure prediction using rough sets. European Journal of operational research, 114(2), 263-280.

  21. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296.

  22. Durana, P., Blazek, R., Machova, V., & Krasnan, M. (2022). The use of Beneish M-scores to reveal creative accounting: Evidence from Slovakia. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(2), 481-510.

  23. Durana, P., Michalkova, L., Privara, A., Marousek, J., & Tumpach, M. (2021). Does the life cycle affect earnings management and bankruptcy?. Oeconomia Copernicana, 12(2), 425-461.

  24. Durana, P., & Valaskova, K. (2022). The Nexus between Smart Sensors and the Bankruptcy Protection of SMEs. Sensors, 22(22), 8671.

  25. Dwyer, M. (1992). A comparison of statistical techniques and artificial neural network models in corporate bankruptcy prediction [Doctoral thesis, University of Wisconsin].

  26. Edmister, R. O. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative analysis, 7(2), 1477-1493.

  27. Farias, F. Z., Martinez, M. D. V., & Martin-Cervantes, P. A. (2021). Explanatory factors of business failure: literature review and global trends. Sustainability, 13(18).

  28. Fernandez‐Alles, M., & Ramos‐Rodríguez, A. (2009). Intellectual structure of human resources management research: A bibliometric analysis of the journal Human Resource Management, 1985–2005. Journal of the American Society for Information Science and Technology, 60(1), 161-175.

  29. Fitzpatrick, F. (1932) A Comparison of Ratios of Successful Industrial Enterprises with Those of Failed Firm. Certified Public Accountant, 6, 727-731.

  30. Gajdosikova, D., & Valaskova, K. (2022). A Systematic Review of Literature and Comprehensive Bibliometric Analysis of Capital Structure Issue. Management Dynamics in the Knowledge Economy, 10(3), 210-224.

  31. Garfield, E. (2006). Citation indexes for science. A new dimension in documentation through association of ideas. International Journal of Epidemiology, 35(5), 1123-1127.

  32. Gavurova, B., Jencova, S., Bacík, R., Miskufova, M., & Letkovsky, S. (2022). Artificial intelligence in predicting the bankruptcy of non-financial corporations. Oeconomia Copernicana, 13(4), 1215-1251.

  33. Gepp, A., Kumar, K., & Bhattacharya, S. (2010). Business failure prediction using decision trees. Journal of Forecasting, 29(6), 536-555.

  34. Giunipero, L. C., Denslow, D., & Rynarzewska, A. I. (2022). Small business survival and COVID-19-An exploratory analysis of carriers. Research in Transportation Economics, 93, 101087.

  35. Grosu, V., Chelba, A. A., Melega, A., Botez, D., & Socoliuc, M. I. (2023). Bibliometric analysis of the literature on evaluation models of the bankruptcy risk. Strategic Management.

  36. Guan, Q. (1993). Development of optimal network structures for back-propagation-trained neural networks [Doctoral thesis, University of Nebraska].

  37. Habib, A. M., & Kayani, U. N. (2022). Does the efficiency of working capital management affect a firm’s financial distress? Evidence from UAE. Corporate Governance: International Journal of Business in Society, 22(7), 1567-1586.

  38. Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787-804.

  39. Himmelstein, D. U., Thorne, D., Warren, E., & Woolhandler, S. (2009). Medical Bankruptcy in the United States, 2007: Results of a National Study. American Journal of Medicine, 122(8), 741-746.

  40. Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert systems with applications, 117, 287-299.

  41. Huang, B., Yao, X., Luo, Y., & Li, J. (2022). Improving financial distress prediction using textual sentiment of annual reports. Annals of Operations Research.

  42. Jaki, A., & Cwiek, W. (2020). Bankruptcy prediction models based on value measures. Journal of Risk and Financial Management, 14(1), 6.

  43. Jones, S. (2017). Corporate bankruptcy prediction: a high dimensional analysis. Review of Accounting Studies, 22, 1366-1422.

  44. Kaczmarek, J., Kolegowicz, K., & Szymla, W. (2022). Restructuring of the coal mining industry and the challenges of energy transition in Poland (1990–2020). Energies, 15(10).

  45. Kapounek, S., Hanousek, J., & Bily, F. (2022). Predictive Ability of Altman Z-score of European Private Companies. Politicka Ekonomie, 70(3), 265-287.

  46. Khoja, L., Chipulu, M., & Jayasekera, R. (2016). Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling. Review of Quantitative Finance and Accounting, 46(3), 483-518.

  47. Kirkos, E. (2015). Assessing methodologies for intelligent bankruptcy prediction. Artificial Intelligence Review, 43(1), 83-123.

  48. Kitowski, J., Kowal-Pawul, A., & Lichota, W. (2022). Identifying symptoms of bankruptcy risk based on bankruptcy prediction models—A case study of Poland. Sustainability, 14(3), 1416.

  49. Kitsios, F., Kamariotou, M., & Talias, M. A. (2020). Corporate sustainability strategies and decision support methods: A bibliometric analysis. Sustainability, 12(2), 521.

  50. Kliestik, T., Hrosova, L., Valaskova, K. & Svabova, L.(2022). Do Firm in the Tourism Sector Manage Earnings? The Case of the V4 Countries. Journal of Tourism and Services, 25(13), 120-136.

  51. Kliestik, T., Sedlackova, A. N., Bugaj, M., & Novak, A. (2022). Stability of profits and earnings management in the transport sector of Visegrad countries. Oeconomia Copernicana, 13(2), 475-509.

  52. Kliestik, T., Vrbka, J., & Rowland, Z. (2018). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 569-593.

  53. Kljucnikov, A., Civelek, M., Cervinka, M., Voznakova, I., & Vincurova, Z. (2022).The Role of SMEs’ Innovativeness and Competitiveness in Their Financial Risk Management Concerns. Journal of Competitiveness, 14(4), 97-116.

  54. Kljucnikov, A., Civelek, M., Krajcik, V., Novak, P., & Cervinka, M. (2022). Financial performance and bankruptcy concerns of SMEs in their export decision. Oeconomia Copernicana, 13(3), 867-890.

  55. Ko, P. C., & Lin, P. C. (2006). An evolution-based approach with modularized evaluations to forecast financial distress. Knowledge-Based Systems, 19(1), 84-91.

  56. Korol, T., & Korodi, A. (2011). An evaluation of effectiveness of fuzzy logic model in predicting the business bankruptcy. Romanian Journal of Economic Forecasting, 3(1), 92-107.

  57. Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., & Kou, S. (2021). Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decision Support Systems, 140, 113429.

  58. Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775-791.

  59. Kovacova, M., Kliestik, T., Kubala, P., Valaskova, K., Radišić, M., & Borocki, J. (2018). Bankruptcy models: Verifying their validity as a predictor of corporate failure. Polish journal of management studies, 18(1), 167-179.

  60. Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743-772.

  61. Kovacova, M., Krajcik, V., Michalkova, L., & Blazek, R. (2022). Valuing the interest tax shield in the central European economies: Panel data approach. Journal of Competitiveness, 14, 41-59.

  62. Kovacova, M., Valaskova, K., Durana, P., & Kliestikova, J. (2019). Innovation management of the bankruptcy: case study of Visegrad Group countries. Marketing and Management of Innovations, (4), 241-251.

  63. Krasteva, N., & Nagy, M. (2022). Evaluation of the financial standing of businesses in a certain sector of the national economy. Ekonomicko-manazerske spektrum, 16(2), 18-36.

  64. Krulicky, T., Machova, V., & Dvorak, O. (2022). Actual paid cost of equity in construction. Entrepreneurship and Sustainability Issues, 10(1), 408-418.

  65. Kubenka, M., Capek, J., & Sejkora, F. (2021). A new look at bankruptcy models. E & M Ekonomie a Management, 24(3), 167-185.

  66. Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European Journal of Operational Research, 180(1), 1-28.

  67. Kumar, S., Lim, W. M., Pandey, N., & Christopher Westland, J. (2021). 20 years of electronic commerce research. Electronic Commerce Research, 21, 1-40.

  68. Lee, J. Y. (2020). Prediction of Default Risk in Peer-to-Peer Lending Using Structured and Unstructured Data. Journal of Financial Counseling and Planning, 31(1), 115-129.

  69. Lelyk, L., Olikhovskyi, V., Mahas, N., & Olikhovska, M. (2022). An integrated analysis of enterprise economy security. Decision Science Letters, 11(3), 299-310.

  70. Lesakova, L., Gundova, P., & Vinczeova, M. (2020). The practice of use of models predicting financial distress in Slovak companies. Journal of Eastern European and Central Asian Research (JEECAR), 7(1), 122-136.

  71. Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124-136.

  72. Li, Y., Ou, J., & Gu, C. (2023). Buyer guarantee and bailout in supplier finance with bankruptcy cost. European Journal of Operational Research, 305(1), 287-299.

  73. Liang, D., Lu, C. C., Tsai, C. F., & Shih, G. A. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572.

  74. Liang, D., Tsai, C. F., & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289-297.

  75. Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175-194.

  76. Maier, F., & Yurtoglu, B. B. (2022). Board Characteristics and the Insolvency Risk of Non-Financial Firms. Journal of Risk and Financial Management, 15(7), 303.

  77. Malakauskas, A., & Lakstutiene, A. (2021). Financial distress prediction for small and medium enterprises using machine learning techniques. Engineering Economics, 32(1), 4-14.

  78. Manthoulis, G., Doumpos, M., Zopounidis, C., & Galariotis, E. (2020). An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks. European Journal of Operational Research, 282(2), 786-801.

  79. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470.

  80. Merwin, C. L. (1942). Financing small corporations in five manufacturing industries, 1926-1936 [Doctoral thesis].

  81. Michalkova, L., Stehel, V., Nica, E., & Durana, P. (2021). Corporate management: capital structure and tax shields. Marketing and Management of Innovations, (3), 276-295.

  82. Michalkova, L., Kovacova, M., Cepel, M., & Belas, J. (2022). Insolvency Prediction and Corporate Bankrutpcy Model in Visegrad Group Countries. Transformations in Business & Economics, 21(2A), 529-548.

  83. Michulek, J., & Krizanova, A. (2023). Green marketing: A Comprehensive bibliometric analysis. Littera Scripta, 16(1).

  84. Michulek, J., Gajanova, L., Krizanova, A., & Nadanyiova, M. (2023). Determinants of improving the relationship between corporate culture and work performance: Illusion or reality of serial mediation of leadership and work engagement in a crisis period?. Frontiers in Psychology, 14.

  85. Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology, 9(4), 101-118.

  86. Min, S. H., Lee, J., & Han, I. (2006). Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert systems with applications, 31(3), 652-660.

  87. Miskufova, M., Jencova, S., & Petruska, I. (2022). Dependence of ROS on financial indicators using threshold regression models. Ekonomicko-manazerske spektrum, 16(2), 49-60.

  88. Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, 106(1), 213-228.

  89. Muller, K. (2022). Busy bankruptcy courts and the cost of credit. Journal of Financial Economics, 143(2), 824-845.

  90. Myskova, R., & Hajek, P. (2020). Mining risk-related sentiment in corporate annual reports and its effect on financial performance. Technological and Economic Development of Economy, 26(6), 1422-1443.

  91. Nagy, M., & Valaskova, K. (2022). The growth of research in earnings management phenomenon. Management dynamics in the knowledge economy, 10(4), 360-375.

  92. Nagy, M., Valaskova, K., & Durana, P. (2022). The Effect of CSR Policy on Earnings Management Behavior: Evidence from Visegrad Publicly Listed Enterprises. Risks, 10(11).

  93. Nyitrai, T. (2019). Dynamization of bankruptcy models via indicator variables. Benchmarking: An International Journal, 26(1), 317-332.

  94. Odom, M. D., & Sharda, R. (1990, June 17-21). A neural network model for bankruptcy prediction. In IJCNN International Joint Conference on Neural Networks, 2, 163-168.

  95. Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 18(1), 109-131.

  96. Olson, D. L., Delen, D., & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473.

  97. Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert systems with applications, 36(1), 2-17.

  98. Pang, X., Zhou, Y., Wang, P., Lin, W., & Chang, V. (2020). An innovative neural network approach for stock market prediction. Journal of Supercomputing, 76(3), 2098-2118.

  99. Park, J. H., Choi, J. Y., Lee, J., & Kyung, M. (2022). Bayesian approach to multivariate component-based logistic regression: analyzing correlated multivariate ordinal data. Multivariate Behavioral Research, 57(4), 543-560.

  100. Pasternak-Malicka, M., Ostrowska-Dankiewicz, A., & Dankiewicz, R. (2021). Bankruptcy-an assessment of the phenomenon in the small and medium-sized enterprise sector-case of Poland. Polish Journal of Management Studies, 24(1), 250-267.

  101. Pavlicko, M., & Mazanec, J. (2022). Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group. Mathematics, 10(8).

  102. Pech, M., Prazakova, J., & Pechova, L. (2020). The evaluation of the success rate of corporate failure prediction in a five-year period. Journal of Competitiveness, 12(1), 108-124.

  103. Prado, J. W., Castro Alcântara, V., Melo Carvalho, F., Vieira, K. C., Machado, L. K., & Tonelli, D. F. (2016). Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968-2014). Scientometrics, 106(3), 1007-1029.

  104. Prochazka, P., & Cerna, I. (2022). Reinvestment and effective corporate income tax rates in V4 countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(3), 581-605.

  105. Randhawa, K., Wilden, R., & Hohberger, J. (2016). A bibliometric review of open innovation: Setting a research agenda. Journal of Product Innovation Management, 33(6), 750-772.

  106. Roumani, Y. F., Nwankpa, J. K., & Tanniru, M. (2020). Predicting firm failure in the software industry. Artificial Intelligence Review, 53, 4161-4182.

  107. Sarhadi, M., Mansouri, F., & Faghani, M. (2022). Efficiency of externally adjusted bankruptcy prediction patterns by bankruptcy prediction of Iranian organizations. International Journal of Nonlinear Analysis and Applications, 13(2), 57-67.

  108. Serrano-Cinca, C., Gutiérrez-Nieto, B., & Bernate-Valbuena, M. (2019). The use of accounting anomalies indicators to predict business failure. European Management Journal, 37(3), 353-375.

  109. Shi, Y., & Li, X. (2019). A bibliometric study on intelligent techniques of bankruptcy prediction for corporate firms. Heliyon, 5(12).

  110. Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert systems with applications, 28(1), 127-135.

  111. Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74(1), 101-124.

  112. Smith, R. F., & Winakor, A. H. (1935). Changes in the financial structure of unsuccessful industrial corporations. University of Illinois.

  113. Smiti, S., & Soui, M. (2020). Bankruptcy prediction using deep learning approach based on borderline SMOTE. Information Systems Frontiers, 22(5), 1067-1083.

  114. Smorada, M., Lukackova, A., Hajduova, Z., Srenkel, L., & Havier, J. (2023). Predictive Financial Analysis as a Tool for Business Management. TEM Journal-Technology Education Management Informatics, 12(1), 147-155.

  115. Son, H., Hyun, C., Phan, D., & Hwang, H. J. (2019). Data analytic approach for bankruptcy prediction. Expert Systems with Applications, 138.

  116. Svabova, L., Michalkova, L., Durica, M., & Nica, E. (2020). Business failure pre-diction for Slovak small and medium-sized companies. Sustainability, 12(11).

  117. Szymura, A. (2022). Risk Assessment of Polish Joint Stock Companies: Prediction of Penalties or Compensation Payments. Risks, 10(5).

  118. Tamari, M. (1966). Financial ratios as a means of forecasting bankruptcy. Management International Review, 6(4), 15-21. Retrieved from

  119. Terceno, A., Vigier, H., & Scherger, V. (2018). Prediction of business failure with fuzzy models. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 26, 21-38.

  120. Tian, X., Geng, Y., Sarkis, J., & Zhong, S. (2018). Trends and features of embodied flows associated with international trade based on bibliometric analysis. Resources, Conservation and Recycling, 131, 148-157.

  121. Tseng, F. M., & Hu, Y. C. (2010). Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks. Expert systems with applications, 37(3), 1846-1853.

  122. Ugur, M., Solomon, E., & Zeynalov, A. (2022). Leverage, competition and financial distress hazard: Implications for capital structure in the presence of agency costs. Economic Modelling, 108.

  123. Valaskova, K., Androniceanu, A. M., Zvarikova, K., & Olah, J. (2021). Bonds between earnings management and corporate financial stability in the context of the competitive ability of enterprises. Journal of Competitiveness, 13(4), 167-184.

  124. Valaskova, K., Kliestik, T., & Kovacova, M. (2018). Management of financial risks in Slovak enterprises using regression analysis. Oeconomia Copernicana, 9(1), 105-121.

  125. Valaskova, K., Kliestik, T., Svabova, L., & Adamko, P. (2018). Financial risk measurement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability, 10(7).

  126. Valaskova, K., Nagy, M., Zabojnik, S., & Lăzăroiu, G. (2022). Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in Slovak exports. Mathematics, 10(14).

  127. Varetto, F. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking & Finance, 22(10-11), 1421-1439.

  128. Villasenor, E. A., Arencibia-Jorge, R., & Carrillo-Calvet, H. (2017). Multiparametric characterization of scientometric performance profiles assisted by neural networks: a study of Mexican higher education institutions. Scientometrics, 110(1), 77-104.

  129. Viswanathan, P. K., Srinivasan, S., & Hariharan, N. (2020). Predicting financial health of banks for investor guidance using machine learning algorithms. Journal of Emerging Market Finance, 19(2), 226-261.

  130. Viswanathan, P. K., Srivathsan, S., & Winston, W. L. (2022). Multiclass Discriminant Analysis using Ensemble Technique: Case Illustration from the Banking Industry. Journal of Emerging Market Finance, 21(1), 92-115.

  131. Wang, X., Xu, Z., & Skare, M. (2020). A bibliometric analysis of Economic Research-Ekonomska Istra zivanja (2007–2019). Economic research-Ekonomska istraživanja, 33(1), 865-886.

  132. Warner, J. B. (1977). Bankruptcy costs: Some evidence. Journal of Finance, 32(2), 337-347.

  133. Xu, X., Chen, X., Jia, F., Brown, S., Gong, Y., & Xu, Y. (2018). Supply chain finance: A systematic literature review and bibliometric analysis. International Journal of Production Economics, 204, 160-173.

  134. Yousaf, U. B., Jebran, K., & Wang, M. (2021). Can board diversity predict the risk of financial distress?. Corporate Governance: International Journal of Business in Society, 21(4), 663-684.

  135. Zelenkov, Y., & Fedorova, E. (2022). Bankruptcy factors at different stages of the lifecycle for Russian companies. Electronic Journal of Applied Statistical Analysis, 15(1), 187-210.

  136. Zhang, D., Zhang, Z., & Managi, S. (2019). A bibliometric analysis on green finance: Current status, development, and future directions. Finance Research Letters, 29, 425-430.

  137. Zhou, F., Fu, L., Li, Z., & Xu, J. (2022). The recurrence of financial distress: A survival analysis. International Journal of Forecasting, 38(3), 1100-1115.

  138. Zhu, Y., Zhou, L., Xie, C., Wang, G. J., & Nguyen, T. V. (2019). Forecasting SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 211, 22-33.

  139. Zmijewski, M .E. (1984) Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22, 59-82.

  140. Zopounidis, C., Galariotis, E., Doumpos, M., Sarri, S., & Andriosopoulo, S. K. (2015). Multiple criteria decision aiding for finance: An updated bibliographic survey. European Journal of Operational Research, 247(2), 339-348.

  141. Zupic, I., & Cater, T. (2015). Bibliometric methods in management and organization. Organizational research methods, 18(3), 429-472.